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Phase Behaviors of Binary Hard-Sphere Mixtures
Using Simple Analytical Equations of State

A. Yokozeki1
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Recently, we have proposed a unified analytical equation of state (EOS) for
solid–liquid–vapor states of matter, and have examined the thermodynamic
properties of argon, carbon dioxide, and methane, as well as binary mixtures
of methane and carbon dioxide. Also it has been demonstrated that the EOS
can be applied for the solid–fluid transition of hard spheres, by eliminating
the attractive part of the EOS. The present work is an extension of the ear-
lier calculations for identical hard spheres, and here we examine the phase
behavior of binary hard-sphere mixtures. The hard-sphere EOS employed in
this study is

P = RT

V −b

(
V −d

V − c

)k

,

where k =1 or 2, and k =0 [or c=d =0] as a special case. b, c, and d are
proportional to a hard-sphere volume, and their mixing rule is a quadratic
form in mole fraction x, with a mixing parameter lij (lij = lj i and lii = 0).
The b parameter is given by

b=
2∑

i,j=1

(bi +bj )

2

(
1− lij

)
xixj .

Similar mixing rules are applied to c and d. It is shown that various fun-
damental phase-transition behaviors can be described: ideal or near ideal,
azeotropic (maximum and minimum), eutectic, eutectoid, monotectic, peritec-
tic types, and stable fluid–fluid de-mixings without becoming metastable due
to the interference of solid–liquid phase transitions. Rather complicated phase
diagrams with a combination of various types are also predicted. The present
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study is a starting point and is useful for understanding the global topology
of solid–liquid–vapor phase transitions of binary mixtures.

KEY WORDS: equation of state; hard spheres; liquid; mixtures; phase
diagrams; solid; thermodynamics.

1. INTRODUCTION

Perhaps the hard-sphere model and the Ising model are the most impor-
tant tools in the field of statistical physics and thermodynamics. Although
it is merely a model with the hard-core repulsive potential, often it pro-
vides a good description of thermodynamic behaviors for actual com-
pounds, particularly for condensed-phase properties, where the excluded
volume (geometrical) effect is a dominant factor. Also it acts as a starting
point in perturbation theories for modeling actual substances. Therefore,
numerous studies of hard-sphere systems have been reported in the past
and no doubt will continue in the future. A brief history of such studies
is given in a recent article [1], and also any standard textbook for statisti-
cal physics describes this important model (for example, Ref. 2).

One of the most exciting accomplishments may be that the equation
of state (EOS) for hard-sphere ensembles was analytically solved based on
the Percus–Yevick approximation of the exact integral equation in the the-
ory of fluids [3], although the EOS resulted in two different equations
(“pressure” and “compressibility” equations). This thermodynamic incon-
sistency having two different EOS forms is due to the assumptions used.
The fluid properties of hard spheres by the EOS are in a good agree-
ment with those of computer simulations or by the virial expansion EOS
[2]. However, the derived EOS does not show any phase transition (or
singularity) within the physically meaningful region. On the other hand,
other approximations, such as the Kirkwood equation or Yvon–Born–
Green equation, cannot be solved analytically. But, by numerical analy-
sis, Kirkwood and Boggs [4] predicted an instability of the fluid state, well
below the closest packing density of a solid, indicating a possible fluid–
solid phase transition for hard spheres. Such a phase transition with the
purely repulsive interaction was indeed conceptionally curious but a quite
fascinating phenomenon if it were real. This is because of the well-known
fact that phase transitions like familiar vapor–liquid equilibria occur when
two opposing (repulsive and attractive) factors are operating in the system.

Later, Alder and Wainwright [5] and Wood and Jacobson [6] con-
firmed such a phase transition independently by computer simulation
using molecular dynamics and Monte Carlo methods. The physical mean-
ing of the transition is still debatable. Some argue that it is due to the
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purely entropic effect (an increase in the entropy of particles inside the
solid “cells” with respect to the fluid state) [1]. However, the present
author prefers the concept of the “statistical (kinetic) attraction” effect of
the purely repulsive force at high density [2]. Or in terms of the language
of statistical mechanics, it may be argued that some geometrical exclusion
(contribution of small “watermelons”) in the cluster integrals neglected in
the Percus–Yevick approximation is responsible for such a phase transition
[2, 7].

The study of mixtures of hard spheres and/or hard non-spherical bod-
ies is a natural extension of the pure hard-sphere model and has been
an active research field in recent years [8–15]. In the last decade, it was
found that binary hard-sphere mixtures show extremely rich phase behav-
ior [1]. Hard-sphere and hard-body mixtures are also important start-
ing models for actual colloid–polymer mixtures or liquid-crystal solutions
[16, 17]. The theoretical approaches for these mixtures are either integral
equation theories or virial expansions of the mixture equation of state.
Although both theoretical methods are well established, results are notori-
ously sensitive to the details of the approximations, and the existence or
non-existence as well as the location of the phase transition is particu-
larly susceptible. The fluid–solid phase boundary is also very sensitive to
the choice of assumptions [1]. On the other hand, direct computer simu-
lations may seem straightforward, and many interesting results have been
reported using various inter-particle potentials [18, 19]. However, besides a
large amount of computational time, results are not always reliable due to
sluggish numerical convergence or very slow equilibration for highly asym-
metric (size) mixtures [1, 8]. Many theoretical studies have been devoted to
the virial expansion equation, where no solid state exists, and the phase
transition, if it occurs, means fluid–fluid separation (de-mixing). One of
the interesting questions is whether fluid–fluid de-mixing occurs in hard-
sphere mixtures with the purely repulsive interaction. This is still debated.
Even if it is predicted, it is not certain whether such a phase transition
is thermodynamically stable with respect to the interference of solid–fluid
phase transitions, as discussed in a recent article [8]. In their brief review
of hard-sphere mixtures, Dijkstra et al. [1] stated in summary, “The pre-
dicted phase behavior of binary hard-sphere mixtures is very sensitive to
the details of the theoretical approaches, and the character of the fluid–
fluid and fluid–solid transitions and their interplay remains poorly under-
stood.”

Apart from numerous fundamental and theoretical studies mentioned
above, to our knowledge, there is no report on hard-sphere mixtures based
on empirical or engineering approaches. This may be due to the fact that
many existing empirical, practical equations and methods are intended to
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deal with actual substances, not for purely model compounds such as
hard spheres. Furthermore, these equations are applied only for the fluid
state, and in order to include the solid state, separate and/or different
equations must be employed. The solid–fluid phase transition characteris-
tics of real compounds play important roles in the field of practical and
industrial applications. Phase diagrams of alloys in metallurgical applica-
tions are good examples, where regular (or quasi-regular) solution mod-
els are often successfully used to describe the solid–liquid phase diagrams
[20]. Although the existing models and methods may be sufficient for prac-
tical and engineering applications to explain and/or correlate the observed
solid–liquid phase-transition behavior, they should also be able to say
something about the limiting case, i.e., (purely repulsive) hard spheres, at
least qualitatively. Analytical simple EOS are far more convenient and
useful to construct complicated solid–fluid phase diagrams of mixtures.
In order to understand the global phase-transition behavior of binary
hard-sphere mixtures, such EOS will be highly desirable and may provide
important insights and information on the sensitive theoretical assump-
tions mentioned earlier.

Recently we have proposed an analytical unified EOS for solid, liquid,
and vapor phases [21]. It can be written in a general form as

P = RT

V −b

(
V −d

V − c

)k

− a

V 2 +qbV + rb2
. (1)

This may be regarded as an extension of the van der Waals (fluid only)
EOS. Without the 2nd term (attractive term), it represents an EOS for
hard spheres. In fact, the well-known solid–liquid phase transition of iden-
tical hard spheres was described well with this EOS [21]. The purpose of
the present work is to analyze hard-sphere mixtures and to see whether
this simple analytical EOS is capable of describing various solid–liquid
phase transition characteristics. Furthermore, this study will be a starting
point to understand the global topological classification of solid–liquid–
vapor phase behaviors of binary mixtures [19, 22, 23]. It should be remem-
bered that the well-known global topological classification (five out of six
classes) for liquid–vapor phase diagrams of binary mixtures was made
using a simple and empirical van der Waals EOS [24].

The organization of the present paper is as follows. Section 2 describes
the hard-sphere EOS, which is the case of a = 0 of Eq. (1). The mixing
rules and physical meanings of the constants b, c, and d are discussed,
and the fugacity coefficients for three EOS forms with the exponent k of
0, 1, and 2 are derived. In Section 3, we discuss the analyses and results of
phase diagrams for binary hard-sphere mixtures. First, a special case of k=
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0 (or c=d), which becomes simply the repulsive part of the van der Waals
EOS, is examined. Although it only presents purely fluid (or purely solid)
states, the analysis provides good physical insights on the mixing parame-
ters used in the present study. In addition, it is shown that the well-known
regular solution model [20, 25] can be derived from this simple form of
EOS: this proof is given for the first time, to the author’s best knowledge.
Next, various phase diagrams are presented using EOS with k=1 and k=2.
Section 4 gives some discussions of the present results and related subjects,
and then concluding remarks follow.

2. EQUATIONS OF STATE

By eliminating the attractive term (a = 0) of Eq. (1), a hard-sphere
EOS becomes

P = RT

V −b

(
V −d

V − c

)k

= RT

V −b

(
1+ c−d

V − c

)k

, (2)

and the compressibility factor Z is given by

Z = V

V −b

(
V −d

V − c

)k

, (3)

where b, c, and d for pure hard spheres are proportional to the hard-
sphere volume, k is zero or a positive integer, and R is the universal gas
constant. The form of the second equal sign in Eq. (2) provides a phys-
ical meaning of this EOS. The term (c − d)/(V − c) is a correction to
the van der Waals’ repulsive term. Since the valid EOS form satisfies the
condition, V > b and b < d < c, as discussed in Ref. 21, this correction
term becomes negative for a region b<V <c, where the solid state resides.
The negative sign means the correction is attractive. This effective attrac-
tion reflects the so-called “kinetic attraction” force in a high-density state
of hard spheres [2]. This interpretation suggests the existence of a similar
but another type of hard-sphere EOS, which will be discussed briefly in a
later section. Thus, there are some theoretical justifications for the present
model, although it is a purely empirical and phenomenological EOS.

N -component mixtures [N = 2 for the present study] are modeled by
the following quadratic mixing rule with each pure component parameter
and binary interaction parameters, lij , mij , and nij , where lij = lj i and lii =
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0, and similar relations hold for mij and nij . Such mixing rules are often
used in the van der Waals type EOS

b =
N∑

i,j=1

(bi +bj )

2

(
1− lij

)
xixj =b1x1 +b2x2 − l12(b1 +b2)x1x2, (4)

c =
N∑

i,j=1

(ci + cj )

2

(
1−mij

)
xixj = c1x1 + c2x2 −m12(c1 + c2)x1x2, (5)

d =
N∑

i,j=1

(di +dj )

2

(
1−nij

)
xixj =d1x1 +d2x2 −n12(d1 +d2)x1x2. (6)

Although the interaction parameter is introduced here as an empiri-
cal adjustable parameter, it has a physical meaning as discussed below. The
non-zero parameter lij (or mij , nij ) may be physically necessary when qua-
dratic mixing in mole fraction is applied. The quadratic mixing is based on
theoretical work [26] of the virial expansion equation for mixtures, where a
random mixing assumption is employed. However, random mixing is valid
only for molecules (or particles) with the same (or similar) sizes, or for
sufficiently low densities of mixtures. When the size is very different and
the density becomes sufficiently high (condensed phase), the cross term,
bij xixj (i �= j), cannot be symmetric with respect to the mole fraction, due
to the geometrical restriction of the nearest neighbors. For example, the
coordination numbers for a small particle (i) surrounded by large particles
(j ) and a large particle (j ) surrounded by small particles (i) are different.
Therefore, the inter-particle collision probability will not simply be a sym-
metric xixj factor [27] and can be highly complex. A similar discussion in
this regard is given in Ref. 28. Concerning the effect of size differences,
often volume fractions instead of mole fractions are used in mixing equa-
tions such as Eqs. (4)–(6), because they allow for the effect of size differ-
ences upon mixing in a more nearly adequate way than do mole fractions
[25]. With a volume fraction ϕi , the parameter b without an empirical
binary interaction parameter is given by

b=
2∑

i,j=1

(bi +bj )

2
ϕiϕj =b1ϕ1 +b2ϕ2, (7)

where
ϕi = bixi

b1x1 +b2x2
. (8)
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In terms of mole fractions, Eq. (7) can be rearranged as

b= b2
1x1

b1x1 +b1x2
+ b2

2x2

b1x1 +b1x2
=b1x1 +b1x2 + (b1 −b2)

2

b1x1 +b1x2
x1x2. (9)

By comparing this equation with Eq. (4), lij is equated to

l12 = l21 =− (b1 −b2)
2

(b1 +b2) (b1x1 +b2x2)
. (10)

In this case, lij becomes a function of mole fractions, and then the mix-
ing becomes non-quadratic in mole fractions. If the size difference is not
too large, it may be appropriate to take an average of b1x1 +b2x2 as (b1 +
b2)/2. Then Eq. (10) becomes

l12 = l21 =−2
(

b1 −b2

b1 +b2

)2

(11)

Thus, the physical meaning of lij (or mij , nij ) may be an effective aver-
age correction when the quadratic mixing in mole fractions is applied and
when the size difference is not too large. Naturally, lij (or mij , nij ) the
size difference. It is useful to obtain such a relationship, since it will pro-
vide a further insight into the physical meaning of these binary interaction
parameters.

Take the parameter b for example. Within the van der Waals theory, it
represents the excluded volume of a pair of hard spheres times Avogadro’s
number (NA). The per particle excluded volume of identical hard spheres
(diameters in σi) is given by

bii ≡bi = 4π

3

(
σi +σi

2

)3 1
2

= 2π

3
σ 3

i . (12)

The factor 1/2 in this equation arises from excluding the double count-
ing of the same particle. For non-identical hard spheres, a similar excluded
volume exists, but a slight modification is required in order to take into
account a possible non-additive effect on the collision diameter,

bij = 4π

3

(
σi +σj

2
(1+α)

)3 1
2

= 2π

3

(
σi +σj

2

)3

β, β ≡ (1+α)3. (13)

The parameter α (or β) is an empirical correction to “additive hard
spheres” (or “non-additive” correction), although the physical meaning is
not obvious. Then, using Eqs. (12) and (13) while taking into account
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Avogadro’s number, the total excluded volume b on a molar basis can be
expanded as

b =
2∑

i,j=1

bij xixj =b1x1

{
x1 + β

4
(1+3γ ) x2

}

+ b2x2

{
x2 + β

4

(
1+ 3

γ

)
x1

}
, (14)

where

γ ≡σ2/σ1 = (b2/b1)
1/3 . (15)

After some algebraic manipulations and use of x1 +x2 =1, Eq. (14) is rear-
ranged as

b=b1x1 +b2x2 − 3
4

{
(1−γ )2

1−γ +γ 2
− β −1

3

}
(b1 +b2) x1x2. (16)

By comparing this with Eq. (4), we can identify the empirically introduced
parameter l12 as

l12 = l21 = 3
4

{
(1−γ )2

1−γ +γ 2
− β −1

3

}
. (17)

It is a function of the size ratio of hard spheres (γ ) and the “non-additive”
parameter (β). Thus, like l12 itself, the physical meaning of α(or β) can be
regarded as an effective average correction for mixing when the quadratic
mixing (or random mixing) is applied.

When we discuss the phase behavior with EOS, the fugacity coeffi-
cient is needed for the equilibrium calculation. The fugacity coefficient of
the ith component, φi , is calculated from the following standard thermo-
dynamic relation with a total number of moles, n, and the ith component
mole number ni [29],

ln φi =
∞∫

V

[(
∂nZ

∂ni

)
T ,nV,nj

−1

]
dV

V
− ln Z (18)

In the case of EOS with k =1

ln φi = 1

(b− c)2

[
(d − c) b

′
i + (b−d) c

′
i + (b− c)

(
d −d

′
i

)]

× ln

∣∣∣∣V −b

V − c

∣∣∣∣− c

b− c
ln

∣∣∣∣V − c

V −b

∣∣∣∣− ln

∣∣∣∣V −d

V − c

∣∣∣∣
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+ 1
b− c

[
(d −b) b

′
i

V −b
+ (c−d) c

′
i

V − c

]
, (19)

where b
′
i , c

′
i , and d

′
i for N-component mixtures and for N=2 are defined

as

b
′
i ≡ b−2

N∑
j=1

(
bi +bj

)
2

(
1− lij

)
xj =−bi + l12 (b1 +b2) (1−xi)

2 , (20)

c
′
i ≡ c−2

N∑
j=1

(
ci + cj

)
2

(
1−mij

)
xj =−ci +m12 (c1 + c2) (1−xi)

2 , (21)

d
′
i ≡ d −2

N∑
j=1

(
di +dj

)
2

(
1−nij

)
xj =−di +n12 (d1 +d2) (1−xi)

2 . (22)

In the case of EOS with k =2,

ln φi = 2 (b−d)

(b− c)3

[
(d − c) b

′
i + (b−d) c

′
i + (c−b) d

′
i

]
ln

∣∣∣∣V −b

V − c

∣∣∣∣
+

[
1−

(
b−d

b− c

)2
]

ln

∣∣∣∣V −b

V − c

∣∣∣∣− b
′
i

V −b

(
b−d

b− c

)2

− 2 ln

∣∣∣∣V −d

V − c

∣∣∣∣− 1
V − c

(
c−d

b− c

)

×
[
c−d + (c−d) b

′
i +2 (b− c) d

′
i +2 (c+d −2b) c

′
i

b− c

− (c−d) c
′
i

V − c

]
. (23)

The special case of EOS with k =0 [or c=d =0] is identical to the repul-
sive part of the van der Waals EOS: P =RT/(V −b). The fugacity coeffi-
cient can be given by a very simple form,

ln φi =− b
′
i

V −b
(24)

The parameters bi , ci , and di (k �=0) for pure hard spheres (diameter of σi)
have been determined so as to reproduce the actual hard-sphere proper-
ties at the solid–fluid phase equilibrium of Hoover and Ree [30]: V0/VS =
0.736 ± 0.003, V0/VL = 0.667 ± 0.003, PV0/RT = 8.27 ± 0.13, where V0 is
the closest packing molar volume of hard spheres (V0 = NAσ 3

i /
√

2), and
the subcsripts S and L refer to solid and liquid phases, respectively. In the
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case of EOS with k=1, bi =1.32647V0, ci =1.41055V0, and di =1.37252V0,
while in the case of EOS with k = 2, bi = 1.32771V0, ci = 1.39782V0, and
di =1.37850V0. The mathematical procedure for the parameter determina-
tion is given in Ref. 21.

3. ANALYSIS AND RESULTS

The phase-equilibrium condition is the equality of the chemical
potential of each species among coexisting phases. In practice, the use of
the fugacity coefficient is more convenient, and then the equilibrium con-
dition for α, β, γ , . . . phases is equivalently given by:

φα
i xα

i =φ
β
i x

β
i =φ

y
i x

y
i =· · · (25)

where i = 1, . . . ,N (N = 2 for the present), and x is the composition in
each phase at the same T and P . These equations are non-linearly coupled
and often difficult to solve, particularly when the phase transition behav-
ior is unknown in advance. For binary systems, the Gibbs free-energy plot
at constant T and P is extremely useful to understand the phase behav-
ior of unknown systems, since the so-called common tangent method can
be used to construct the phase behavior characteristics. Furthermore, such
a plot does not require any solution of coupled non-linear equations. The
Gibbs energy function G is conveniently related to the fugacity coefficient
and can be written in a dimensionless form,

G

RT
=

2∑
i=1

xi ln
φixi

φ0
i

, (26)

where φ0
i is a pure component’s fugacity coefficient at a system (T , P ),

and can be chosen at an arbitrary reference point.
It should be mentioned that T and P cannot be separate variables

in the case of hard spheres and a T –P ratio becomes a thermodynamic
variable. In the present study, we use a ratio RT/P as the variable, which
has a molar volume unit but is normalized with the corresponding value
(RT/P )SL at the solid–liquid phase transition of the pure hard-sphere
species (with a diameter σ1),

(RT/P )SL = V0

ZSL
= NAσ 3

1√
2ZSL

, (27)

where the compressibility factor ZSL =8.27 was taken from Ref. 30. Thus
the normalized (dimensionless) RT/P is a relative volume, but also repre-
sents a relative temperature in an isobaric process or a relative inverse of



Phase Behaviors of Binary Hard-Sphere Mixtures 653

pressure in an isothermal process. In this work, the relative RT/P is called
an effective temperature, τ (for an isobaric process).

The phase behavior characteristics of hard-sphere mixtures in the
present model are controlled by the size ratio (γ ), the effective “temper-
ature” (τ , relative RT/P), and the binary interaction parameters (lij , mij ,
nij ). In order to understand the phase behavior graphically, a computer
program plotting Eq. (26) as a function of x has been made for any input
of the control parameters. Using the computer program, we can visually
inspect the phase equilibria of binary mixtures; the phase stability, meta-
stability, and approximate compositions are instantly observed on a com-
puter screen. This method has been extensively used in the present study.
Once the phase behavior characteristics are known in this way, an actual
phase diagram can be constructed by solving the non-linearly coupled
equations Eq. (25), using a Newton–Raphson iteration method.

3.1. EOS with k = 0 [or c = d = 0]

Although the present purpose is to study systems with both solid and
fluid phases, it is instructive to study a special case of Eq. (2) with k = 0
(or c = d = 0). It is simply the repulsive part of the van der Waals (fluid-
only) EOS. The van der Waals EOS for mixtures is known to predict
fluid–fluid separations (or de-mixing). Then the question arises whether
only the purely repulsive part of the EOS in such a simple form can
produce such a phase separation. This is an important and interesting
question. The result may provide some insights for hard-sphere fluid phase
transitions.

Since the fugacity coefficient is a simple form as given by Eq. (24),
the Gibbs free energy can be written explicitly. A value of V in Eq. (24)
is a solution of the EOS with k = 0 at a given RT/P ratio, and is simply
V =RT/P +b. b

′
i in Eq. (24) can be written using Eq. (20) as

b
′
1 = −b1 + l12 (b1 +b2) x2

2 , (28)

b
′
2 = −b2 + l12 (b1 +b2) x2

1 . (29)

Then, the reduced Gibbs free energy, Eq. (26), becomes

G

RT
=− P

RT
l12 (b1 +b2) x1x2 +x1 ln x1 +x2 ln x2, (30)

where the reference point for each pure component was taken as ln φ0
i =

Pbi/(RT ), since the chemical potential of a pure component can be cho-
sen arbitrarily. This result is very interesting, since it is the same form as
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a well-known regular solution model [20, 25],

G

RT
= zε

RT
x1x2 +x1 ln x1 +x2 ln x2 (31)

where z is an average coordination number of the nearest neighbors and
ε≡ ε12 − (ε11 + ε22) /2. εij is the inter-particle potential energy of i–j near-
est neighbor pairs, and can be purely repulsive (positive value) or purely
attractive (negative value) with respect to the infinite separation of pairs.
It is easy to show that if ε > 0, fluid–fluid separation (de-mixing) occurs,
and the critical point of de-mixing is zε=2RTc It should be noted that the
regular solution model contains the case of purely repulsive inter-particle
potentials as well, and that the case of ε ≥ 0 can occur for either purely
repulsive or attractive εij . From Eqs. (30) and (31), the following relation-
ship holds:

zε

RT
=− P

RT
l12 (b1 +b2) . (32)

Therefore, in order for the present pure repulsive EOS to have any fluid
de-mixing, the parameter l12 must be negative (for ε > 0), and then the
critical condition is P

RT
l12 (b1 +b2) = −2. A negative l12 means β > 1 (or

α > 0), and the fluid de-mixing occurs for the size ratioγ region satisfying
a relation (1−γ )2 /

(
1−γ +γ 2

)
<(β −1) /3; see Eq. (17).

Although the present repulsive EOS shows the possibility of fluid
de-mixing, it is not certain whether such a phase separation can be ther-
modynamically stable with respect to the interference of solid–liquid phase
equilibria. Furthermore, the present single-branch EOS may present a
solid–state EOS instead of the liquid state, and the de-mixing may be an
iso-structural solid–solid separation. Since the present EOS does not have
both solid- and liquid-phase branches, this point must be studied with a
solid–fluid EOS, which is the case of k �=0

3.2. EOS with k = 1

Using the computer program for the Gibbs-energy plot mentioned
earlier, various phase behaviors have been found by changing the control
parameters: the size ratio (γ ), the effective temperature (τ , relative RT/P),
and the binary interaction parameters (lij ,mij , nij ). Before analyzing the
present EOS, we must know the proper magnitude of the interaction
parameters. Although they are empirical and unknown parameters, they
cannot be arbitrarily large and unbounded.

Let the parameter b1 be the larger excluded volume and b2 be the
smaller one, without loss of generality. Then, a mixture’s b with any com-
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position must satisfy the following physical condition: b2 < b < b1. Using
Eq. (4) and this relation (regardless of x), we arrive at

∣∣lij ∣∣< b1 −b2

b1 +b2
= 2

1+γ 3
−1<1, (33)

where i �= j and 0 <γ 3 ≡ b2/b1 < 1,, defined in Eq. (15). It may be worth
mentioning here that the condition in Eq. (33) restricts the validity range
in the “non-additive” parameter β (or α) in Eq. (13) as well. Based on Eq.
(17)

0<β <5, or −1<α <51/3 −1≈0.71. (34)

For mij and nij , conditions similar to Eq. (33) should hold. In addition to
Eq. (33), another constraint exists among the interaction parameters. The
relationship that a parameter value in d is between b and c must be satis-
fied in order for the present EOS to be physically a correct form, as dis-
cussed in Ref. 21. This requirement can be analytically solved by applying
the tangential condition to Eqs. (4)–(6). The allowed range of the interac-
tion parameters depends upon the size parameter γ . At a given γ input to
the Gibbs-energy plot program, the information of the allowed range is dis-
played on a computer screen, as well as the relative magnitude plot of the
interaction parameters and simultaneously the Gibbs energy as a function
of x. In this way, phase behavior characteristics of the present binary sys-
tem are quickly examined visually using various proper input parameters.

After trial-and-error analysis of various combinations of input param-
eters, it has been found that the present EOS can simulate all basic phase-
transition behaviors known for actual binary solid–liquid systems [20,
31], including rather unusual behaviors. This means that the solid–liquid
equilibrium of actual substances is essentially governed by the repulsive
(geometrical) factor. The size γ effect on phase behaviors is embedded in
the interaction parameter. This may be understood by Eq. (17). The inter-
action parameter is a function of γ and β (or α), and the different size
effect can be compensated with a proper set of interaction parameters.
Generally, the larger the magnitude of the interaction parameter, the larger
the size difference results, and vice versa. Therefore, in the following anal-
ysis we examine the general phase behavior in the case of a fixed value γ

of 0.75, which can be regarded as an effective and general size difference.
In the case of extreme differences such as γ < 0.1, the present mixing rule
may not be applicable, and some discussion about very large size differ-
ences will be given in a later section.

Usually the phase diagram for binary mixtures is plotted as a
temperature–composition (T – x) diagram at a constant pressure, or a
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pressure–composition (P– x) diagram at a constant temperature. However,
as mentioned earlier, in the case of hard-sphere mixtures T and P cannot
be separated, and only the ratio (or the compressibility factor) is mean-
ingful. In order to mimic the familiar T – x phase diagram, we use the
“relative RT/P” defined in Section 3 as an effective “temperature” (τ ) at
constant pressure. Typical phase-behavior characteristics studied here are
summarized in Figs. 1–7. They are plotted as τ–x (or “relative RT/P”–x)
diagrams, where the size parameter γ is 0.75 for all cases and the inter-
action parameters l12,m12, and n12 are designated as l, m, and n, respec-
tively.

Figures 1 and 2 show the case of l, m, and n with zero or posi-
tive values. Zero interaction parameter means the mixing is linear for b,
c, or d (see Eqs. (4)–(6)), and then the non-additive parameter for γ =
0.75 becomes β ≈1.2308 (or α ≈0.07166), based on Eq. (17). Figure 1a is
such a case, and the system may be regarded as an ideal mixture. In the
case of “additive” hard spheres (β = 1, or α = 0), the interaction param-
eter l, m, or n becomes about 0.05769, as shown in Fig. 1b, which is
nearly ideal. Further increases in l, m, and n values do not change the
topology of the phase diagram. However, when a part (one or two) of the
three interaction parameters is non-linear (quadratic) and the other is lin-
ear, the phase behavior can become highly non-ideal, as shown in Figs. 1c,
d, and 2a–d. Maximum and minimum azeotropies (Figs. 1c, d, 2a, and c)
appear. The former cases do not have solid–solid separations, while the
latter cases show iso-structural solid–solid phase separation at a low rel-
ative RT/P. Figure 2b, d show rather unusual and complicated phase dia-
grams. Figure 2b possesses two peritectic points, a minimum azeotropy,
and a eutectoid, while Fig. 2d has two eutectic points, a maximum azeo-
tropy, and two miscibility gaps with lower critical solution temperatures
(LCST) in the solid state.

Figures 3–7 show an analysis in the case of zero and negative inter-
action parameters, where all cases have the solid–solid phase separation.
In Fig. 3, several familiar phase diagrams are simulated: spindle-like (near
ideal) liquidus–solidus lines, a minimum azeotropy with a solid–solid mis-
cibility gap at low RT/P, and a simple eutectic point. In Fig. 4, the
effect of the interaction parameter l with m = n = 0 is examined. The
decrease in l produces progressively complex phase diagrams: minimum
azeotropy, “upper critical solution temperature” (UCST) in the solid and a
monotectic point (Fig. 4a); eutectic, UCST, and monotectic (Fig. 4b);
eutectic, peritectic, and monotectic (Fig. 4c); two eutectic, maximum
azeotropy, and eutectoid (Fig. 4d). Figure 5 shows the effect of values for
l = m = n, which are continuations of the case of Fig. 3a. With a suffi-
ciently large value of the interaction parameter (Fig. 5b), a liquid–liquid
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separation (de-mixing) occurs, and the phase diagram has an UCST and
two peritectic points. The increase in l from −0.125 to −0.135 while keep-
ing the same m=−0.100 and n=−0.135 produces also a liquid–liquid sep-
aration with an UCST but two eutectic points (Fig. 6). Figure 7 shows
a subtle effect of n while keeping l = m = −0.125; one of the peritectic
points in Fig. 7a becomes a eutectic point with an increase in the n value
(Fig 7b).

3.3. EOS with k = 2

As mentioned in Ref. 21, the phase-behavior characteristics of EOS
with a general k value are expected to be at least qualitatively the same
as those in EOS with k = 1, although a higher- k EOS would improve
the volumetric properties. In fact, the well-known solid–fluid phase transi-
tion of identical hard spheres was equally well reproduced using EOS with
k = 2. Then only b,c, and d parameters must be changed and are some-
what different from those in EOS with k = 1: refer to the end of Section
2. In order to investigate whether any new phase behavior occurs in hard-
sphere mixtures with a different EOS, the phase behavior using EOS with
k = 2 has been investigated. The analysis has been easily made using the
Gibbs-energy plot program mentioned earlier, since the computer program
is made so as to be able to switch EOS between k = 1 and k = 2 on the
same IO (input/output) screen. Thus, two EOS results are quickly exam-
ined and compared. As expected, EOS with k=2 produced the same topo-
logical phase behaviors as those in EOS with k = 1. The same topology
of the phase characteristics was made simply using a set of interaction
parameters somewhat different from those in EOS with k =1.

4. DISCUSSION

The present analytical EOS for hard-sphere mixtures seems useful for
understanding the topology of the solid–liquid phase transition charac-
teristics of binary hard-sphere mixtures. Although they are by no means
exhausted, the types of phase diagrams produced are surprisingly rich, and
the present results will provide some useful insights on theoretical stud-
ies of binary hard spheres. In addition, the results show good qualita-
tive descriptions for the phase-transition behavior of actual substances [20,
31]. For example, the rather complicated and curious shape of the phase
diagram predicted in Fig. 4b represents an excellent topology for actu-
ally observed binary alloys (Al-Zn system) [20, 32], as compared in Fig. 8.
Other complex shapes of phase diagrams shown in Figs. 2b, 2d, and 4d
are actually illustrated in a textbook [31], except for the LCST predicted
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Fig. 5. Phase diagrams of binary hard-sphere mixtures: relative RT/P
vs. mole fraction. See more details in the figure caption of Fig. 1. The
horizontal dotted lines are the triple-point lines.

in the solid solution of Fig. 2d, which seems to be a newly discovered
feature, although such behaviors are quite common in liquid solutions
[28].

The validity of the present mixing model should be discussed here. As
mentioned in Section 3, the quadratic mixing (or random mixing) model is
incorrect in the case of a large size difference and a high density. However,
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Fig. 6. Phase diagrams of binary hard-sphere mixtures: relative RT/P
vs. mole fraction. See more details in the figure caption of Fig. 1. The
horizontal dotted lines are the triple-point lines.

with the use of effective interaction parameters (l12, m12, n12), the quali-
tative features of phase diagrams appear to be correct for all size ratios,
although we did not investigate extreme cases (γ �1). Such extreme cases
are surely beyond the validity of the present model. The valid size ratio
for the present model may be γ >0.1547, which is the case when a smaller
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Fig. 7. Phase diagrams of binary hard-sphere mixtures: relative RT/P vs.
mole fraction. See more details in the figure caption of Fig. 1. The horizon-
tal dotted lines are the triple-point lines.

sphere can be just accommodated within the holes of the array formed
by mutually touching larger spheres:γ = 2/

√
3 − 1 ≈ 0.1547. When γ �

0.1547, qualitatively different behaviors for the solid–liquid phase transi-
tions may occur, since small spheres can act like pure hard spheres inside
the interstices of large spheres (or large spheres act like simple walls of a
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container). In order to study such extreme asymmetric size mixtures, the
empirical mixing parameters (l12, m12, n12) must be treated as a function
of mole fraction, instead of the effective average constant for the random
mixing model.



666 Yokozeki

In the present study on solid–liquid phase behavior, we have examined
two types of EOS with k = 1 and k = 2. The qualitative phase behaviors
with both EOS are the same. A higher k value EOS will also give simi-
lar results, although the higher k EOS would improve the numerical accu-
racy of volumetric properties [21]. The use of a simpler low- k EOS to
analyze phase behavior may be justified by the known fact of usual vapor–
liquid phase equilibria: the TPx (temperature–pressure–composition) dia-
gram is not very sensitive to the volumetric properties. For example, a
simple cubic EOS can accurately describe observed vapor–liquid TPx dia-
grams, although the liquid density in such an EOS is poorly predicted.

As mentioned in Section. 2, another type of EOS for hard spheres can
be considered based on the idea of the statistical (kinetic) attraction in the
purely repulsive interaction of a high-density system. Then, a general form
can be written as P/RT = (repulsive term) − (“kinetic” attraction term),
where both terms are T independent. In fact, an analytically closed hard-
sphere EOS [33] which reproduces well both solid and liquid branches of
the Monte Carlo computer simulations of hard spheres has exactly this
type of form, although the EOS required a large number of constants, as
many as 18 constants. An empirical EOS form with an extra attractive
term for the solid–liquid–vapor state by Wenzel and Schmidt [34] can be
justified by the present interpretation (“kinetic attraction” term), except for
the T dependence of the added attractive term, which results in an exis-
tence of a critical point in the solid–liquid phase equilibrium. One of the
simplest such forms will be P/RT =1/(V −b)−d/(V −c)2, which can pos-
sess a solid–liquid phase transition with proper positive b, c, d constants
with a condition of b > c. This type of EOS was also examined in the
present study with the same mixing rule for the EOS constants, and then,
we have found qualitative phase behaviors similar to those in the present
EOS.

The present result revealed rich solid–liquid phase diagrams, and add-
ing the vapor phase contribution will be made without much difficulty
using Eq. (1) with the attractive term. Then we can study the global topo-
logical classification of vapor–liquid–solid phase behaviors of binary mix-
tures. The present study is the starting point for such a study. Lamm
and Hall [19] have attempted such a classification for the Lennard-Jones
potential fluid using Monte Carlo computer simulations. However, some
interesting topologies in solid–solid phase behavior at low temperatures
(see Figs. 2 and 4) have not been studied, and critical point phenomena
cannot be evaluated in their method, although they claimed that “the
complete phase diagram was constructed.” In addition, it is worth men-
tioning that the computational burden to construct the phase diagram
is minimum with the present simple analytical EOS, even in the case
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of highly complex diagrams such as Fig. 4c, d, which require six and
seven separate phase-equilibrium calculations for solid–liquid and solid–
solid phases. Each phase-equilibrium calculation needs less than 1 or 2 s
with modern PC computers, compared with many hours for Monte Carlo
computations.

5. CONCLUSIONS

We have demonstrated that the present simple analytical EOS can
simulate various basic topological features of solid–liquid phase equilibria
of binary hard spheres, including highly complex phase diagrams with the
combination of basic diagrams. Although the present catalog of phase dia-
grams for binary mixtures is by no means exhaustive, it has already shown
some new features. Complex behaviors of the interplay in solid–liquid and
liquid–liquid phase transitions can be observed by systematically changing
the binary interaction parameters.

The empirically introduced interaction parameters may be justified as
an effective average correction for the quadratic (random) mixing rule, and
as far as the qualitative prediction of phase behavior is concerned, the
present quadratic mixing seems reasonable. The interaction parameters are
closely related to the size difference of hard spheres, and thus their phys-
ical meanings can be understood as the size-difference effect.

The present study is a starting point and highly useful for construct-
ing the complex global topological classification of solid–liquid–vapor
phase diagrams of binary mixtures.
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